Hydroxylated polychlorinated biphenyls as inhibitors of the sulfation and glucuronidation of 3-hydroxy-benzo[a]pyrene.
نویسندگان
چکیده
Polychlorinated biphenyls (PCBs) can be metabolized by cytochromes P450 to hydroxylated biotransformation products. In mammalian studies, some of the hydroxylated products have been shown to be strong inhibitors of steroid sulfotransferases. As a part of ongoing research into the bioavailability of environmental pollutants in catfish intestine, we investigated the effects of a series of hydroxylated PCBs (OH-PCBs) on two conjugating enzymes, phenol-type sulfotransferase and glucuronosyltransferase. We incubated cytosolic and microsomal samples prepared from intestinal mucosa with 3-hydroxy-benzo[a]pyrene and appropriate cosubstrates and measured the effect of OH-PCBs on the formation of BaP-3-glucuronide and BaP-3-sulfate. We used PCBs with 4, 5, and 6 chlorine substitutions and the phenolic group in the ortho, meta, and para positions. OH-PCBs with the phenolic group in the ortho position were weak inhibitors of sulfotransferase; the median inhibitory concentration (IC50) ranged from 330 to 526 microM. When the phenol group was in the meta or para position, the IC50 was much lower (17.8-44.3 microM). The OH-PCBs were more potent inhibitors of glucuronosyltransferase, with IC50s ranging from 1.2 to 36.4 microM. The position of the phenolic group was not related to the inhibitory potency: the two weakest inhibitors of sulfotransferase, with the phenolic group in the ortho position, were 100 times more potent as inhibitors of glucuronosyltransferase. Inhibition of glucuronosyltransferase by low concentrations of OH-PCBs has not been reported before and may have important consequences for the bioavailability, bioaccumulation, and toxicity of other phenolic environmental contaminants.
منابع مشابه
Structure-activity relationships for hydroxylated polychlorinated biphenyls as substrates and inhibitors of rat sulfotransferases and modification of these relationships by changes in thiol status.
Hydroxylated metabolites of polychlorinated biphenyls (OH-PCBs) are inhibitors and substrates for various human sulfotransferases (SULTs). Although the rat is often used in toxicological studies on PCBs, the interactions of OH-PCBs with rat SULTs are less well understood. In the present study, 15 OH-PCBs were investigated as potential substrates or inhibitors of purified recombinant rSULT1A1 an...
متن کاملGlucuronidation of carcinogen metabolites by complementary DNA-expressed uridine 5'-diphosphate glucuronosyltransferases.
Five UDP glucuronosyltransferases (UGT) were synthesized from complementary DNAs expressed in COS 7 cells and were tested for their capacities to glucuronidate a range of 2-acetylaminofluorene and benzo(a)pyrene-hydroxylated metabolites. Three forms, UGT1*06, UGT2B1, and UGT2B2 [names of UGT forms follow recommended nomenclature (B. B. Burchell et al., DNA Cell Biol., 10: 487-494, 1991)], had s...
متن کاملImmunochemical study on the contributions of two molecular species of microsomal cytochrome P-450 to the metabolism of benzo(a)pyrene by rat liver microsomes.
The roles of two species of cytochrome P-450, the major cytochrome P-450 components of liver microsomes of phenobarbital-treated rats (PB-P-450) and 3-methylcholanthrene-treated rats (MC-P-448), were studied in the metabolism of benzo(a)pyrene in rat liver microsomes in vitro. Benzo(a)pyrene was incubated with polychlorinated biphenyl-treated rat liver microsomes, in which PB-P-450 and MC-P-448...
متن کاملInduction of monooxygenation in rainbow trout by polybrominated biphenyls: a comparative study.
Two commercial polychlorinated biphenyl mixtures (Aroclor 1254 and Aroclor 1242) and one polybrominated biphenyl mixture (FireMaster BP-6) were examined for their abilities to induce hepatic microsomal monooxygenation in rainbow trout (Salmo gairdneri). Pretreatment of rainbow trout with Aroclors 1254 and 1242 (150 mg/kg IP) resulted in an approximate 10-fold induction of arylhydrocarbon (benzo...
متن کاملMultiphoton spectral analysis of benzo[a]pyrene uptake and metabolism in a rat liver cell line.
Dynamic analysis of the uptake and metabolism of polycyclic aromatic hydrocarbons (PAHs) and their metabolites within live cells in real time has the potential to provide novel insights into genotoxic and non-genotoxic mechanisms of cellular injury caused by PAHs. The present work, combining the use of metabolite spectra generated from metabolite standards using multiphoton spectral analysis an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental Health Perspectives
دوره 110 شماره
صفحات -
تاریخ انتشار 2002